Sparse Attentive Memory Network for Click-through Rate Prediction with Long Sequences

Qianying Lin Alibaba Group Hangzhou, China qianying.lqy@alibaba-inc.com

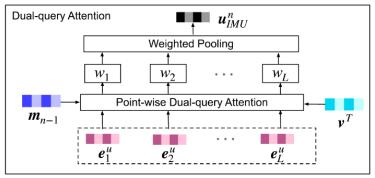
Qing Da Alibaba Group Hangzhou, China daqing.dq@alibaba-inc.com Wen-Ji Zhou Alibaba Group Hangzhou, China eric.zwj@alibaba-inc.com

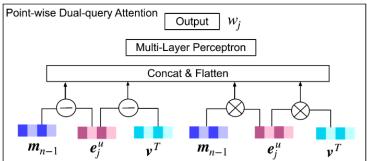
Qing-Guo Chen Alibaba Group Hangzhou, China qingguo.cqg@alibaba-inc.com Yanshi Wang Alibaba Group Hangzhou, China yanshi.wys@alibaba-inc.com

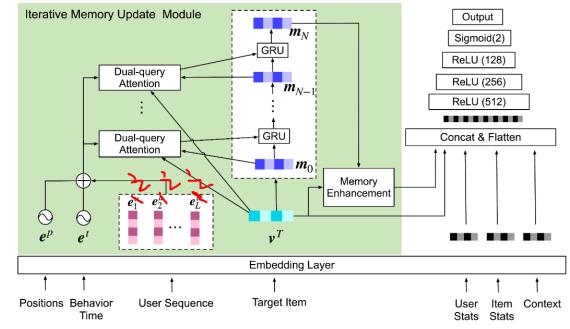
Bing Wang Alibaba Group Hangzhou, China lingfeng.wb@alibaba-inc.com

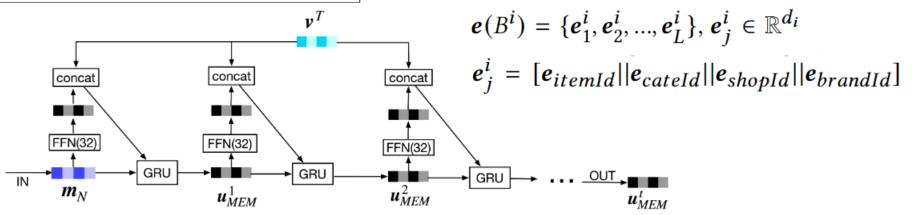
CIKM 2022

Code: https://github.com/waldenlqy/SAM

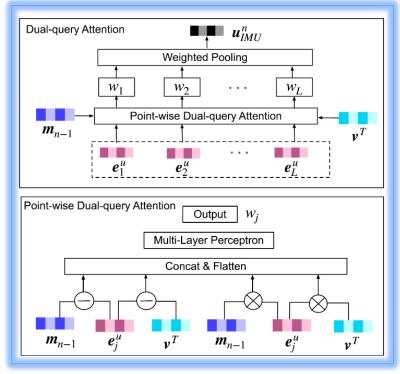


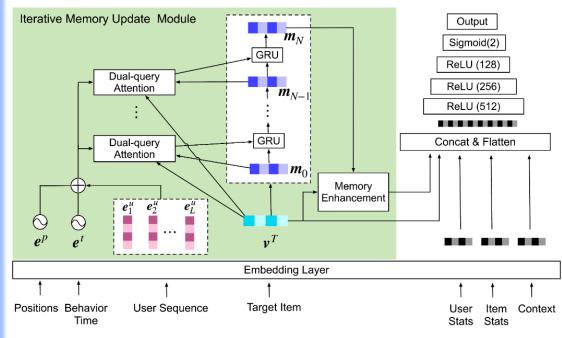

Motivation


Details:


• The introduction of long-term interests improves both recommendation accuracy and the degree of personalization. The sequences used are usually truncated to users' most recent 50 to 100 behaviors.

Problem Statement

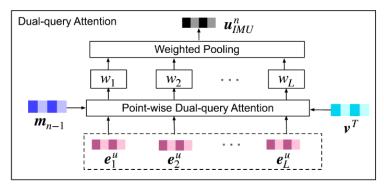

$$e(B^{p}) = \{e_{1}^{p}, e_{2}^{p}, ..., e_{L}^{p}\}$$

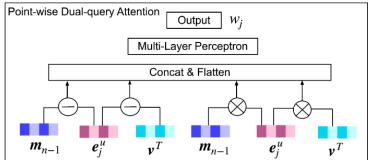

$$e(B^{t}) = \{e_{1}^{t}, e_{2}^{t}, ..., e_{L}^{t}\}$$

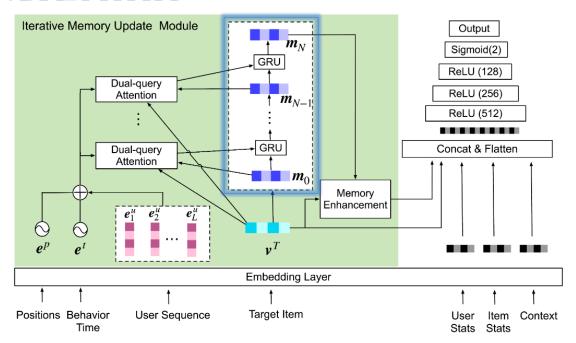
$$e(B^{u}) = \{e_{1}^{u}, e_{2}^{u}, ..., e_{L}^{u}\}$$

$$e_{i}^{u} = e_{i}^{i} \oplus e_{i}^{t} \oplus e_{i}^{p}$$

Method

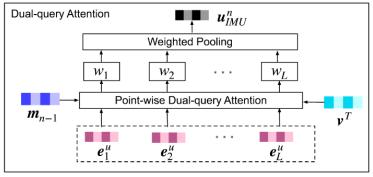


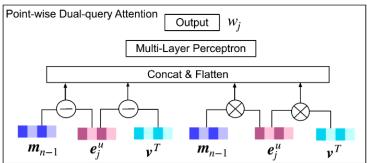

$$\alpha_{j}(e_{j}^{u}, v^{T}, m_{t}) = [e_{j}^{u} \ominus m_{t} || e_{j}^{u} \ominus v^{T} || e_{j}^{u} \otimes m_{t} || e_{j}^{u} \otimes v^{T}] \quad (1) \quad u_{IMU}^{n} = f(v^{T}, \bigcup (e(B^{u})), m_{n-1})$$

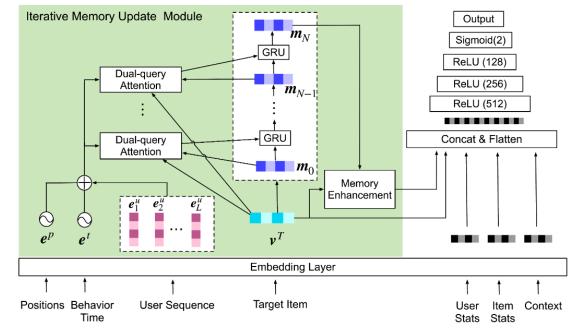

$$a_{j}(e_{j}^{u}, v^{T}, m_{t}) = \sigma(W^{(2)}\sigma(W^{(1)}\alpha_{j}(e_{j}^{u}, v^{T}, m_{t}) + b^{(1)}) + b^{(2)}) \quad (2) \qquad = \sum_{j=1}^{L} a_{j}(e_{j}^{u}, v^{T}, m_{n-1})e_{j}^{u} = \sum_{j=1}^{L} w_{j}e_{j}^{u}$$

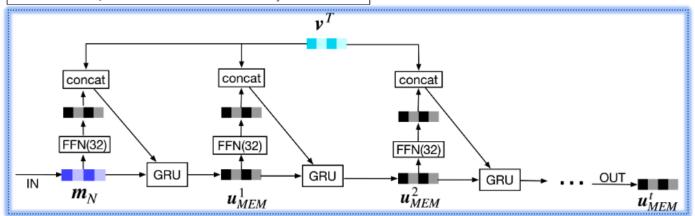
$$(5)$$

Method








$$m_n \leftarrow f(\cup(e(B^u)), m_{n-1})$$
 (3)
 $m_0 = v^T$ (4)
 $m_n = GRU(u_{IMU}^n, m_{n-1})$ (6)

Problem Statement

$$\boldsymbol{u}_{MEM}^{t} = GRU([\boldsymbol{W}^{u}\boldsymbol{u}_{MEM}^{t-1} || \boldsymbol{v}^{T}], \boldsymbol{u}_{MEM}^{t-1})$$
 (7)

	AUC (mean±std)			
	Books	Movies	Industrial	
YouTube	0.83738(±0.00131)	0.83432(±0.00164)	0.73534(±0.000081)	
DIN	$0.85162(\pm0.00272)$	0.86026(±0.00130)	0.73749(±0.000126)	
DIEN	0.85498(±0.00128)	$0.86542(\pm0.00072)$	$0.73807(\pm0.000093)$	
SASRec	0.82144(±0.00748)	0.83690(±0.00953)	$0.73461(\pm0.000140)$	
MIMN	0.85228(±0.00138)	$0.87140(\pm 0.00085)$	$0.73678(\pm0.000201)$	
UBR4CTR	$0.84834(\pm0.00062)$	0.85957(±0.00145)	$0.73649(\pm0.000096)$	
SAM 2P	0.85370(±0.00196)	0.88214(±0.00138)	$0.73939(\pm0.000034)$	
SAM 3P	0.86723(±0.00077)	0.88352(±0.00149)	0.74152(±0.000093)	
SAM 3P+	0.86926(±0.00142)	0.88628(±0.00097)	0.74234(±0.000087)	
SAM 3P+ts	0.86997(±0.00113)	0.88714(±0.00157)	0.74238(±0.000103)	

Table 1: Model performance (AUC) for two public benchmarks and the industrial dataset with maximum affordable sequence lengths.

		YouTube	DIN	DIEN	SASRec	MIMN	UBR4CTR	SAM 3P
	SeqLen=50	0.80841	0.81873	0.84541	0.81008	0.82753	0.81762	0.85662
	SeqLen=100	0.81729	0.84569	0.84866	0.82144	0.84393	0.82833	0.86056
Books Dataset	SeqLen=200	0.82544	0.84724	0.85498	N.A.	0.85228	0.83488	0.86377
	SeqLen=500	0.83252	0.84807	N.A.	N.A.	N.A.	0.84165	0.86538
	SeqLen=1000	0.83738	0.85162	N.A.	N.A.	N.A.	0.84834	0.86723
	SeqLen=50	0.81336	0.83538	0.84946	0.82978	0.85312	0.82824	0.86347
	SeqLen=100	0.82293	0.84676	0.85997	0.83690	0.86638	0.84297	0.87032
Movies Dataset	SeqLen=200	0.82743	0.84917	0.86542	N.A.	0.87140	0.84739	0.87691
	SeqLen=500	0.83075	0.85563	N.A.	N.A.	N.A.	0.85301	0.87950
	SeqLen=1000	0.83432	0.86026	N.A.	N.A.	N.A.	0.85957	0.88352
	SeqLen=50	0.73019	0.73298	0.73304	0.73296	0.73212	0.73287	0.73443
	SeqLen=100	0.73236	0.73327	0.73331	0.73325	0.73379	0.73309	0.73511
Industrial Dataset	SeqLen=200	0.73264	0.73331	0.73599	0.73461	0.73678	0.73315	0.73796
	SeqLen=500	0.73371	0.73728	0.73807	N.A.	N.A.	0.73586	0.74029
	SeqLen=1000	0.73534	0.73749	N.A.	N.A.	N.A.	0.73649	0.74152

Table 2: Model performance (AUC) for varying sequence lengths for the proposed solution and the compared models. Experiments with N.A. incur Out-of-Memory (OOM) error during training.

Method	AUC(mean±std)				
	Books	Movies	Industrial		
w/o. attention	0.83738(±0.00131)	0.83432(±0.00164)	0.73534(±0.000081)		
w/o. iterative walk	0.85162(±0.00272)	0.86026(±0.00130)	0.73749(±0.000126)		
dot product	0.84885(±0.00147)	0.85644(±0.00115)	0.73677(±0.000085)		
w/o. subtraction op.	0.86491(±0.00068)	0.87536(±0.00133)	0.74020(±0.000124)		
delayed cross	0.85343(±0.00121)	0.86037(±0.00107)	0.73892(±0.000132)		
w/o. m.e.	0.86723(±0.00077)	0.88352(±0.00149)	0.74152(±0.000093)		
full (SAM 3P+ts)	0.86997(±0.00113)	0.88714(±0.00157)	0.74238(±0.000103)		

Table 3: Ablation study on the SAM model structure

Method	Complexity	Seq. Op.	Max Path	Encoding
DIN	$O(L \cdot d)$	O(1)	$O(\infty)$	(CROSS)
DIEN	$O(L \cdot d^2)$	O(L)	O(L)	(ENC, CROSS)
SASRec	$O(L^2 \cdot d)$	O(1)	O(1)	(ENC, CROSS)
MIMN	$O(L \cdot d^2)$	O(L)	O(L)	(ENC, CROSS)
UBR4CTR	$O(L \cdot d)$	O(1)	$O(\infty)$	(CROSS)
SAM	$O(L \cdot d)$	O(1)	O(1)	(CROSS, ENC)

Table 4: Complexity, minimum number of sequential operations (abbreviated as Seq. Op.), maximum path length, and encoding paradigms for compared methods. L is the sequence length and d is the model dimension.

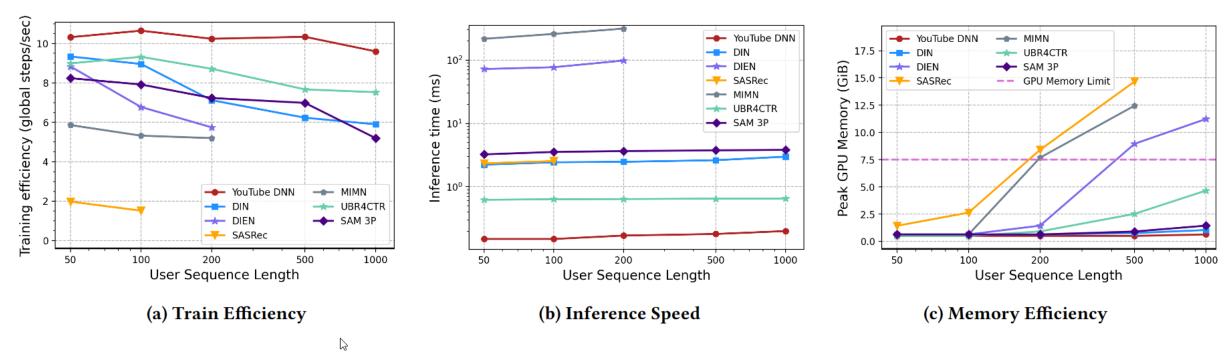


Figure 3: Computational cost and memory efficiency for all compared models. The x-axes are on logarithmic scales for all three plots. The y-axis for Fig.3b is on a logarithmic scale.

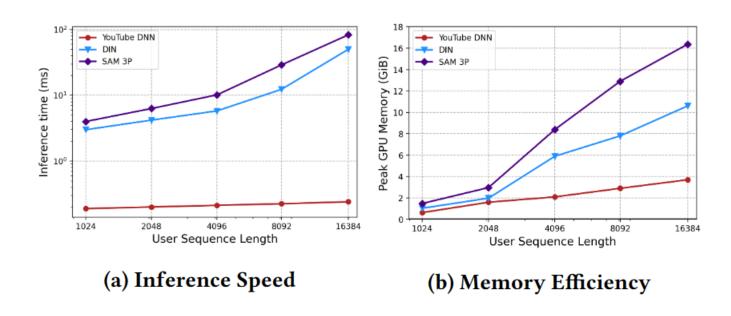
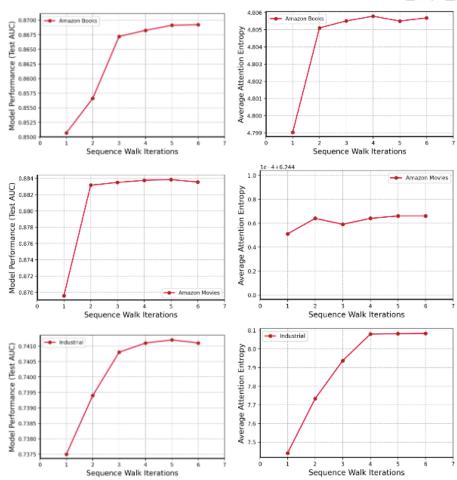



Figure 4: Inference time and peak memory usage for extremely long sequences with lengths up to 16K. The y-axis for the inference time is on a logarithmic scale.

$$Entropy_{\alpha}(x) = -\sum_{i}^{L} (\alpha_{i}(x) \log(\alpha_{i}(x)))$$
 (8)

Table 5: Online A/B test results for consecutive 9 days. The row Impr denotes relative improvement.

	Online A/B Metrics (mean±std)				
	CTR	TCIC	CCC		
Base	4.4254%±0.0244%	325741±2701.9	2.979±0.0133		
SAM	4.7482%±0.0222%	375733±4055.1	3.193±0.0181		
Impr	7.30%±0.93%	15.36%±1.65%	7.19%±0.80%		

Thanks